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Abstract--The problem of pulsatile flow in a tube with constant heat flux at the wall is considered 
analytically to determine how pulsation affects the rate of heat transfer and how the phenomenon depends 
on the Prandtl number and on pulsation frequency. The results indicate that in a range of moderate values 
of the frequency there is a positive peak in the effect of pulsation whereby the bulk temperature of the fluid 
and the Nusselt number are increased, but the effect is reversed when the frequency is outside this range. 

The peaks are higher at lower Prandtl numbers. © 1997 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

The problem of pttlsatile flow in a tube has received 
considerable attention in recent years. The classical 
work of Womersley [1], Uchida [2] and Atabek and 
Chang [3] and many others that followed have led to 
exact solutions and considerable information about 
the oscillatory flow field. Studies of the corresponding 
heat transfer problem, however, have been far less 
numerous and existing results do not provide com- 
plete information about the temperature field and the 
rate of heat transfe'r in pulsatile flow. The problem is 
important in biological applications in relation to 
blood flow and in industrial applications in relation 
to heat exchange efficiency. 

In general the pulsatile flow field is assumed to 
consist of a steady Poiseuille flow part and a purely 
oscillatory part, and it is believed that the rate of 
heat transfer is changed because pulsation alters the 
thickness of the thermal boundary layer and hence the 
thermal resistance. This view was first supported by 
Richardson [4] who showed that the velocity profile 
for pulsating flow is steeper near the wall than it is in 
steady Poiseuille flow. It then follows from con- 
sideration of Reynolds analogy that the temperature 
profile will be affected in a similar way and the rate of 
heat transfer should increase. 

Later, Siegel and Perlmutter [5] demonstrated the 
explicit dependence of overall heat transfer on pul- 
sation frequency. They found that when constant tem- 
peratures was prescribed for the wall boundary 
condition, the local Nusselt number showed periodic 
behaviour which could enhance heat transfer. More 
recently, Creff and Andre [6] studied developing pul- 
satile flow in a duct using finite difference methods 
and showed the importance of the entry region for the 

unsteady thermal phenomena and their longitudinal 
evolution. Cho and Hyun [7] obtained a numerical 
solution of the boundary layer equations coupled with 
a corresponding form of the energy equation for pul- 
satile flow with heat transfer in a pipe. They found an 
increase in Nusselt number with an increase in the 
amplitude of pulsation as well as frequency, but in the 
latter the increase in Nusselt number had charac- 
teristics of a local maximum. Later, Kim et al. [8] 
studied the corresponding heat transfer problem in a 
channel. 

The aim of the present paper is to demonstrate the 
mechanics of heat transfer in pulsatile flow in a pipe 
by means of an analytical solution in order to show 
clearly how pulsation affects the rate of heat transfer 
and how the phenomenon depends on the Prandtl 
number and on the nondimensional frequency par- 
ameter. For this reason we choose the problem of 
pulsatile flow with constant heat flux at the tube wall. 
This boundary condition allows us to solve the 
coupled partial differential equations involved and 
obtain a measure of the bulk temperature within the 
tube. The condition of constant heat flux may be par- 
ticularly relevant in biological applications where heat 
is generated at a constant rate as a result of metabolic 
activity. It may also be important in heat exchangers 
in which the exchange is controlled to occur at a 
constant rate. 

GOVERNING EQUATIONS 

The temperature T* within the tube is assumed to 
be governed by the simplified energy equation 

k (o2r, l Or*  
Ot-~-+U*Ox * --pep\Or .2 + ~  Or*,] (1) 

t Author to whom correspondence should be addressed, where cp, k, p are specific heat, conductivity and den- 
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NOMENCLATURE 

a tube radius T 
c o heat capacity at constant pressure u 

J0, go Bessell functions of the first and second 
kind of order 0 

k thermal conductivity of the fluid 
Nu Nusselt number 
p pressure fl 
Pr Prandtl number 0 
qw heat transfer at the tube wall 01b 
r radial coordinate measured from tube 2 

axis p, p 
Re Reynolds number o~ 
t time * 

temperature 
velocity component in axial direction 
axial coordinate measured from tube 
entrance. 

Greek symbols 

nondimensional pulsation parameter 
temperature difference 
oscillatory bulk temperature 

= 

viscosity and density of the fluid 
frequency 
denotes a dimensional quantity. 

sity of the fluid, respectively, x*, r* are axial and radial 
coordinates within the tube, t* is time, and a star is 
being used to indicate the dimensional form of these 
variables. As the form of this equation indicates, the 
flow is assumed to be in the axial direction only so 
that velocity components in the other two directions 
are zero. Also, viscous dissipation effects are assumed 
to be negligibly small compared with the convective 
rate of heat transfer so that the dissipation function 
term in the full energy equation is neglected. 

The solution sought is for a region of the tube which 
we shall refer to as the "thermal region", where the 
heat flux at the tube wall is constant and fluid is 
entering the region at a uniform temperature T~0. 
Introducing the nondimensional temperature differ- 
ence 

T* -- To* 
0 = (2) 

qwa/k 

where qw is the constant heat flux at the tube wall 
and a is the radius of the tube, other variables are 
nondimensionalized as follows 

x = x*k/pcpfia 2 = x* /aPrRe  

t = t*k/pcpa 2 

r = r*/a 

u = u*/~o. (3) 

Here fi0 is a constant reference velocity to be specified 
later and 

Pr = #Cp 
k 

Pfioa Re  = (4) 
# 

With these the governing equation takes the non- 
dimensional form 

00 00 020 1 00 
+ u ~  = ~ (5) &- 

Or 2 r Or U X  

with boundary conditions for O(x, r, t) 

~0 
~-(x, 1, t) = 1 
o r  

0(0, r, t) = 0 

#0 
= ( x ,  o, t) = o. 
o r  

(6) 

OSCILLATORY FLOW FIELD 

The flow field within the thermal region of the tube 
is now assumed to consist of a steady part represented 
by fully developed Poiseuille flow [9] plus an oscil- 
latory part represented by the classical solution for 
pulsatile flow in a rigid tube [1,2]. Thus in dimensional 
form we write 

u*(r, t) = # ( r  .2 - a 2 )  + 
iAi 

,~p po)* 

x (1 - - J ° (x / - - iPeg*ae / l~r* /a ) -~e  ] (7) 

where Ao is the pressure gradient driving the steady 
part of the flow and A~ is the amplitude of the oscil- 
latory pressure gradient driving the oscillatory part of 
the flow, that is 

@ ,  
= A0 +Ale/'°''* (8) 

where co* is dimensional frequency, i = x ~ - f ,  and J0 
is a Bessel function of the first kind of order 0. It 
should be noted that both parts of the velocity field 
are independent of x, that is both the steady and the 
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pulsatile parts of the flow are assumed to be fully 
developed. 

Introducing a nondimensional frequency parameter 

pCp a2 , 
o9 = ~ a ~  = PrRe~ (9) 

where R~ = pa(a~o*)/p is a Reynolds number based 
on the velocity aco*, the expression (equation (7)), for 
the velocity can be put in the nondimensional form 

u(r, t) = uo(r) + flul (r, t) 

where 

u0 ( r )  = ( 1  - r 2) 

ul(r,t) = - - i  (1 J o ( ~ r ) ] e ' ° "  (12) 
o~, Jo ( ~ )  / 

fl = 4 ( ~ o ) P r .  (13) 

Variables have been nondimensionalized as before, 
with the normalizing velocity ti 0 now being taken as 
the maximum velocity in Poiseuille flow, namely 

u* u* - Aoa 2 
u0 = 7 - ,  ul = - 7 ,  t ~ 0 - - -  (14) 

u0 u0 4p 

A solution for 0 is now sought in the same form as 
that of the velocit~ (equation (10)), namely 

O(x,r,t) = Oo(x,r)+flOl(r,t) (15) 

where Oo(x, r) represents the steady part of the tem- 
perature corresponding to that in steady flow, while 
01(r, t) represents the change in temperature due to 
oscillatory flow. The latter is independent of x since, 
as discussed earlier, it is based on fully developed flow. 
This form for the temperature field must clearly rest on 
the assumption that the value of the nondimensional 
parameter fl is small, or in any case does not exceed 
1.0, but again in the fully developed region of the flow 
this condition can be somewhat relaxed. 

Substituting for the velocity and temperature in the 
governing equation (equation (5)) yields the following 
two boundary value problems for Oo(x, r) and 01(r, t) 

00o 0200 1 00o 
Uo dx Or 2 + r Or 

00o 
~-r  tx, 1) = 1 

00(0, r) = 0 

O0o (x, 0) = 0 
0r 

001 000 0201 1 301 
Ot +Ul ~3X Or 2 + r Or 

-•r• (1, t) = 0 

~r '(0,  t) = 0. (17) 

OSCILLATORY TEMPERATURE 

(10) A solution for the steady-state temperature 00 was 
obtained by Sellars et al. [10]. The form of the solution 
is rather complicated for calculation purposes but it 
is possible to deduce from it that 00 becomes a linear 

(11) function of x downstream. More accurately, as x 
becomes large, 

O00 
0-7- -> 4.0. (18) 

In fact to a good degree of approximation the con- 
dition applies for x > 1.0. 

This result makes it possible to seek a solution of 
equation (17) for 01(r, t) in the form 

(16) 

01 (r, t) = 4h(r) e i~' (19) 

which will be valid in the downstream region of the 
flow where equation (18) is valid. Substituting this 
into equation (17) leads to the following non- 
homogeneous Bessel equation for h(r) 

where 

d2h 1 dh 
dr 2 + r drr - icoh = 9(r) 

h'(1) = 0,h'(0) = 0 (20) 

- i  ( 1 -  J°(x/-i°o/Prr)~ (21) 

g(') = -~- J 0 ( ~ )  l 

We obtain a solution of equation (20) in terms of 
Green's functions which has the general form I11] 

- - C  1 

h(r) = - ~ J 0 ( 2 r )  fo g°(2r)g(z' co) dr 

where 

;o + G(r,r)g(~,og)dr (22) 

2 = a / x / ~ ,  a = x / 7 ~  (23) 

c l = ~l(b/a) (24) 

(25) a = \ ~ ] , = ,  b = \ - ---~--r  ,],=, 

where Yo is a Bessel function of the second kind of 
order 0, ~ denotes the real part of a complex quantity, 
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c is the Wronskian and G is the Green's function, 
defined by 

Jo (~r) Yo (~r) 

c =  cfJ0 ~?Yo (26) 
Or ~ r  

1 
a(r, z) = c [Yo(~r)Jo(otr)H(r-r) 

+ J0 (~r) Y0 (ccz)H(z- r)]. (27) 

After substitution for a, b, c, g and G, the solution 
takes the full form 

- - ~ C I  r \ ~1 

h ( r ) =  2 =J° =r'Jo 

+  Jo( r) 1 - 
d r  

rt , , , f'Jo(oCc) [1 Jo(2Z)] 

(28) 

Using this result, the oscillatory temperature 
O~(r, t), as defined in equation (19), is now fully deter- 
mined. 

RESULTS AND DISCUSSION 

Because of the simplification (equation (18)) used 
to obtain the solution for the temperature, our results 
are restricted to the downstream region of the flow 
where the Nusselt numbers, steady and oscillatory, 
have become independent of x. Thus to determine the 
effect of pulsation on the rate of heat transfer in that 
region, we now define the local Nusselt number 

qw2a/k 
Nu = (29) 

~ T * ( 1 ) -  T~b 

and the corresponding Nusselt number in steady flow 

qw2a/k 
Nuo - T~0(1) - T~0b (30) 

where subscript b refers to bulk properties, and an 
overbar indicates a time average over one cycle of 
oscillation, that is 

_ 1 12n/'° 
~T*(1) - 2 ~ J 0  ~T*(1, t) dt (31) 

i ~u(r)~T*(r)rdr 

Tb = .~ (32) 

j ~u(r)rdr 
0 

In terms of the nondimensional temperature differ- 
ence 0 (equation (2)), the expressions for the Nusselt 
numbers (equations (29), (30)) become 

2 
Nu = - - - -  (33) 

~0(1)--0b 

2 
Nuo - 0o (1) -- 0Ob" (34) 

Because of the periodicity of Ul, 0~, and since uo 
represents the velocity profile in steady Poiseuille flow, 
it is found that 

fo I f ~ ( r ) r d r  = uo(r)rdr = 
0 

and 

where 

0b = 00b +flZ0~b (36) 

00b = /'Jo' uoOordr (37) 

f01 Olb = 4 ~ul~Olrdr  

= 8 (~lg(r)Nh(r)+Jg(r)Jh(r))rdr (38) 

and J refers to the imaginary part of a complex quan- 
tity. 

As a measure of the effect of pulsation we now 
consider the relative difference quantity 

Nu-- Nuo Nu 
ANu - - -  1. (39) 

Nuo Nuo 

Substituting for the Nusselt numbers from equations 
(33) and (34), and for the bulk temperature from 
equation (36), this becomes finally 

1 
ANu - 2 (40) 

- - - 1  
flZ NUoOlb 

In this expression the parameter fl is specified in 
accordance with its definition in equation (13). We 
have taken three values to illustrate the results: 
fl = 0.1, 0.5, 1.0. The steady flow Nusselt number Nuo 
is taken from available results: we used Nuo = 4.5 
from Sellars et al. [10]. The main variable in the cal- 
culation of ANu is thus the oscillatory bulk tem- 
perature 0lb. This is consistent with the physics of the 
problem since heat transfer from the tube is constant 
because of the imposed boundary conditions, thus the 
effect of pulsation can occur only in terms of change 
in bulk temperature of fluid within the tube relative 
to wall temperature. 

Values of the oscillatory bulk temperature 0~b are 
calculated from equations (38) and (19), and the solu- 
tion for h(r) in equation (28). The calculation is not 
straightforward since the integrals in equation (28) 
must be evaluated analytically as functions of r before 
the integrals in equation (38) can be evaluated numeri- 
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Fig. 1. Variation of bulk temperature 0~b with nondimensional frequency co and Prandtl number Pr. 

cally. Bessel functions were replaced by appropriate 
Taylor series in order to achieve this. 

Variation of 01b with frequency and with three 
different Prandtl  numbers is shown in Fig. 1. It is 
observed that in e~tch case the bulk temperature has a 
maximum at a ce.rtain value of the frequency, the 
maximum being higher at lower values of the Prandtl  

number. The corresponding change in Nusselt number  
is illustrated in Fig. 2, in terms of the variation of ANu 
with frequency. Again, a maximum is observed, which 
is higher at lower values of the Prandtl  number. Effect 
of change in the pulsation parameter fl is illustrated 
in Fig. 3. With fl = 0.1 the effect of  pulsation is close 
to zero, but  with fl = 1.0 pulsation can produce sig- 
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Fig. 2. Ch~mge in Nusselt number ANu with nondimensional frequency co and Prandtl number Pr, with 

frequency parameter fl = 1.0. 
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Fig. 3. Change in Nusselt number ANu with nondimensional frequency ~o and frequency parameter fl, with 
Prandtl number Pr = 1.0. 

nificant change in the rate of  heat  transfer.  Since this 
value of/~ may be at  the limit of  validity of  the results, 
we use it here mainly to establish a t rend ra ther  than  
to produce  accurate results at  this value of  ft. 

To  conclude,  our  results indicate tha t  the effect of  
pulsat ion on  heat  t ransfer  in a tube with cons tan t  heat  
flux at  the wall is to alter the bulk  tempera ture  of  the 
fluid within the tube, thus allowing the cons tan t  heat  
flux to take place with a smaller or larger tempera ture  
difference than  it does in steady flow. The results indi- 
cate tha t  when  co ~ 15 there is a positive peak in the 
effect of  pulsat ion whereby the bulk tempera ture  of  
the fluid and  the Nussel t  n u m b e r  are increased, bu t  
when  the value of  09 is (approximately)  lower than  5 
or higher  than  25 this effect is reversed. The peaks are 
higher  at  lower Prandt l  numbers .  We believe tha t  the 
reason for the characteris t ic  peak in the curves is tha t  
the mechan ism for change in the rate of  heat  transfer,  
as outl ined by Richardson  [4], is no t  effective at  ei ther 
very low or very high frequency. The  reason for which 
the peaks are higher  at  lower Prandt l  numbers  Pr 
is tha t  lower values of  P, are associated with lower 
m o m e n t u m  diffusivity and  higher  heat  diffusivity. In 
general trend,  these results are consis tent  with the 
conclusions of  Barne t t  and  V a c h o n  [12] and  those of  
Cho  and  Hyun  [7]. 
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